skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhong, Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Urban agriculture has significant potential to address food security and nutritional challenges in cities. However, water access for urban food production poses a major challenge in the face of climate change and growing global freshwater scarcity, particularly in arid and semi‐arid areas. To support sustainable urban food production, this study focuses on a hybrid urban water system that integrates two important alternative water resources: a decentralized system of rainwater harvesting (RWH) and a centralized reclaimed water system. A new spatial optimization model is developed to identify the best investment strategy for deploying these two alternative water infrastructures to expand urban food production. The model is applied to the case study in Tucson, Arizona, a semi‐arid city in U.S. Southwest, to address food deserts in the region. Results show that 72%–96% of the investment is allocated to rainwater tanks deployment across all investment scenarios, with the proportion of investment in rainwater harvesting increasing as total investment rises. However, rainwater contributes only about 18%–27% of the total food production. The results of our case study indicate that expanding the reclaimed water network is more effective for urban food production and is also more cost‐efficient compared to implementing rainwater tanks. The new model can be applied to other regions, taking into account factors such as crop types, climate, soil conditions, infrastructure configurations, costs, and other site‐specific variables. The study provides valuable insights for planning urban water systems that incorporate alternative water sources under different investment scenarios. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available November 3, 2025
  3. null (Ed.)
  4. null (Ed.)